Login

Register

Login

Register

Arduino Based Audio Spectrum Analyzer

This Video will illustrate you how to visualize audio left and right signals in bar-graph in 16X2 LCD Display using Arduino.
Components Required:
1. Arduino UNO
2. 16X2 LCD Display
3. 3.5mm Audio Jack
4. Jumper Wires

 

Connection Diagram:

Video Link

Arduino Code

#include <LiquidCrystal.h>
#include <fix_fft.h>

#define DEBUG 0
#define L_IN 1 // Audio input A0 Arduino
#define R_IN 0 // Audio input A1 Arduino

const int Yres = 8;
const int gain = 3;
float peaks[64];
char im[64], data[64];
char Rim[64], Rdata[64];
char data_avgs[64];
int debugLoop;
int i;
int load;

LiquidCrystal lcd(11, 10, 7, 6, 5, 4); // pins to LCD

// Custom CHARACTERS
byte v1[8] = {
  B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111
};
byte v2[8] = {
  B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111
};
byte v3[8] = {
  B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111
};
byte v4[8] = {
  B00000, B00000, B00000, B00000, B11111, B11111, B11111, B11111
};
byte v5[8] = {
  B00000, B00000, B00000, B11111, B11111, B11111, B11111, B11111
};
byte v6[8] = {
  B00000, B00000, B11111, B11111, B11111, B11111, B11111, B11111
};
byte v7[8] = {
  B00000, B11111, B11111, B11111, B11111, B11111, B11111, B11111
};
byte v8[8] = {
  B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111
};

void setup() {

  if (DEBUG) {
    Serial.begin(9600); // hardware serial
    Serial.print(“Debug ON”);
    Serial.println(“”);
  }

  lcd.begin(16, 2);
  lcd.clear();
  lcd.createChar(1, v1);
  lcd.createChar(2, v2);
  lcd.createChar(3, v3);
  lcd.createChar(4, v4);
  lcd.createChar(5, v5);
  lcd.createChar(6, v6);
  lcd.createChar(7, v7);
  lcd.createChar(8, v8);

  for (i=0;i<80;i++)
  {
    for (load = 0; load < i / 5; load++)
    {
      lcd.setCursor(load, 1);
      lcd.write(5);
    }
    if (load < 1)
    {
      lcd.setCursor(0, 1);
      lcd.write(5);
    }

    lcd.setCursor(load + 1, 1);
    lcd.write((i – i / 5 * 5) + 1);
    for (load = load + 2; load < 16; load++)
    {
      lcd.setCursor(load, 1);
      lcd.write(9);
    }
    lcd.setCursor(0, 0);
    lcd.print(“LOADING………”);
    delay(50);
  }
  lcd.clear();
  delay(500);
}

void loop() {

  for (int i = 0; i < 64; i++) {    // 64 bins = 32 bins of usable spectrum data
    data[i]  = ((analogRead(L_IN) / 4 ) – 128);  // chose how to interpret the data from analog in
    im[i]  = 0;   // imaginary component
    Rdata[i] = ((analogRead(R_IN) / 4 ) – 128);  // chose how to interpret the data from analog in
    Rim[i] = 0;   // imaginary component
  }

  fix_fft(data, im, 6, 0);   // Send Left channel normalized analog values through fft
  fix_fft(Rdata, Rim, 6, 0); // Send Right channel normalized analog values through fft

  // At this stage, we have two arrays of [0-31] frequency bins deep [32-63] duplicate

  // calculate the absolute values of bins in the array – only want positive values
  for (int i = 0; i < 32; i++) {
    data[i] = sqrt(data[i]  *  data[i] +  im[i] *  im[i]);
    Rdata[i] = sqrt(Rdata[i] * Rdata[i] + Rim[i] * Rim[i]);

    // COPY the Right low-band (0-15) into the Left high-band (16-31) for display ease
    if (i < 16) {
      data_avgs[i] = data[i];
    }
    else {
      data_avgs[i] = Rdata[i – 16];
    }

    // Remap values to physical display constraints… that is, 8 display custom character indexes + “_”
    data_avgs[i] = constrain(data_avgs[i], 0, 9 – gain);     //data samples * range (0-9) = 9
    data_avgs[i] = map(data_avgs[i], 0, 9 – gain, 0, Yres);  // remap averaged values
  }

  Two16_LCD();
  decay(1);
}

void Two16_LCD() {
  lcd.setCursor(0, 0);
  lcd.print(“L”); // Channel ID replaces bin #0 due to hum & noise
  lcd.setCursor(0, 1);
  lcd.print(“R”); // ditto

  for (int x = 1; x < 16; x++) {  // init 0 to show lowest band overloaded with hum
    int y = x + 16; // second display line
    if (data_avgs[x] > peaks[x]) peaks[x] = data_avgs[x];
    if (data_avgs[y] > peaks[y]) peaks[y] = data_avgs[y];

    lcd.setCursor(x, 0); // draw first (top) row Left
    if (peaks[x] == 0) {
      lcd.print(“_”);  // less LCD artifacts than ” “
    }
    else {
      lcd.write(peaks[x]);
    }

    lcd.setCursor(x, 1); // draw second (bottom) row Right
    if (peaks[y] == 0) {
      lcd.print(“_”);
    }
    else {
      lcd.write(peaks[y]);
    }
  }

  debugLoop++;
  if (DEBUG && (debugLoop > 99)) {
    Serial.print( “Free RAM = ” );
    Serial.println( freeRam(), DEC);
    Serial.println( millis(), DEC);
    debugLoop = 0;
  }
}

int freeRam () {
  extern int __heap_start, *__brkval;
  int v;
  return (int) &v – (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}

void decay(int decayrate) {
  int DecayTest = 1;
  // reduce the values of the last peaks by 1
  if (DecayTest == decayrate) {
    for (int x = 0; x < 32; x++) {
      peaks[x] = peaks[x] – 1;  // subtract 1 from each column peaks
      DecayTest = 0;
    }
  }

  DecayTest++;
}

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email
Fill in the form for S’O’A Fablab Orientation 2021.
Open chat
Hello! Welcome to Arduino Based Audio Spectrum Analyzer!